
Application: Clickteam Fusion (2.0 / 2.5)
Applicable Exporters: Android
Time Required: ~30 Minutes

AN EXTENSIVE GUIDE TO
IMPLEMENTING IN-APP PURCHASES INTO FUSION APPS

Welcome to this walkthru tutorial on how to implement Android In-App Purchases into 
your Fusion applications and games. This walkthru was written on 27th November 2013 
and could be subject to changes dependent on any changes with Google's IAP system.

You will require Multimedia Fusion 2 with the Android Exporter or Fusion 2.5 with the 
Android exporter. This walkthru should take no longer than an estimated 30 minutes to 
read through. Your final implementation of this example should also be around 20 
minutes.

CONTENTS

1) Setting Up Your App in Fusion
2) Setting Up Your App in Google Play
3) Design
4) Implementation
5) Testing
6) FAQ (Frequently Asked Questions)

This guide was written with everybody in mind. From entry level users of Fusion 
products through to advanced users. You can always check out the forums over at 
http://community.clickteam.com for further information, questions, answers and 
examples if you are looking for something that is not contained inside this guide. You can
also refer to Google's Official Documentation on In-App Purchases as that is exclusively 
applicable to the IAP object you will be using.

As usual, all comments, suggestions and feedback is welcome on this guide.

I hope you find this guide useful.

Enjoy!

Danny

http://community.clickteam.com/


The first thing you should do here is, setup your application inside Fusion. Any Android 
application that is going to be using In-App Purchasing requires the correct object and 
the correct permissions to enable the object to function correctly, so let's go ahead and 
do that.

You can put the InApp Purchase extension anywhere in the frame. It can be inside or 
outside of the frame, regardless this is a hidden extension that only functions in the 
background of your game. Nothing is drawn to the screen or the frame with this 
extension.

There is NO NEED to set a BILLING permission as requested by Google's SDK. Fusion 
automatically sets the BILLING permission up in your Manifest, so no need to worry 
about that.



Now, you will need to set the Internet Permission up for your application. Without the 
Internet Permission selected, your application will not be able to communicate with 
Google's Servers.

Now, you will need to setup your application inside of Google Play! This is pretty straight
forward (although it may appear slightly daunting) I guarantee once you've managed to 
successfully implement IAP's the first time, you'll be away in creating them for all your 
future apps and games made with Fusion with no hassle.

Now, you will need to setup inside your Play account, test user accounts. Google will not
allow you to test In-App Purchasing with your own developer account. So you have two 
options here, you can either use someone else’s Play account (with permission of course)
or you can setup another Google Play account (Not Necessarily Developer) just a Google 
Account that has a credit/debit card attached to it.

Because I am testing on one of my devices, I use my personal Gmail account (as the 
primary device account) and it has a debit card attached to it, so I can just build & run 
and instantly test on my devices, once you have performed this next step...



Now, click on Services & APIs inside your application and copy-paste the license key from
here into the public key property of the IAP object inside Fusion.



For some odd reason, Google Play! Forces you to upload your APK BEFORE adding or 
testing IAPs. However, this is fine, you can just upload your application as it currently is.
Just set your game to RELEASE MODE, fill in the details and build an APK in release 
mode.

Once you have completed all of the above then upload the APK to your Play listing as an 
ALPHA or BETA release. This APK is just a testing APK so be sure to only use Version 1 and
Version 1.0 string in the Android properties.

Just a sidenote here, you do NOT need to reupload the APK to the store when you 
make any changes inside Fusion for testing, just keep it in release mode in Fusion 
and just hit Build & Run to your device. All Google Play is looking for (in test stages) 
is that the App Identifier and license key are the same.

Okay, so now we should have the APK setup on the Google Play store and we should also 
have the MFA setup in Fusion to correspond to all the correct settings, now we need to 
implement some InApp Purchases for your users!



You will need to design a layer in your frame that will handle the InApp Purchases. It's 
best to design it in a separate layer so you can keep it away from the rest of your 
application/game objects. It also means once you've finished designing it you can hide 
the layer in Fusion so you don't have to keep seeing it or referring to it (unless you need 
to).

Ideally, you should just have a splash screen that pops up enabling the user to select 
something to purchase and it proceeds to purchase the object. This is a very basic and 
simple demonstration just for this guide. Once you have mastered implementing IAPs of 
course you can expand how your app/game looks and how you present your IAP's to your 
users.

Your method of displaying the purchase screen can be as simple or as complex as you 
like, however there are a few rules you must follow. These rules are:

1) The user must be able to clearly see what he/she is purchasing
2) The user must be able to clearly see pricing and availability
3) There should be a button or indication on where to click to buy an IAP

This is pretty much the design section complete. Let's hop over to the implementation 
section where we get our hands dirty with putting events into your MFA, from start to 
finish!



Google's documentation isn't the easiest to read, understand and/or follow, hence this 
guide. I hope this guide up until this point at least is readable and understandable thus 
far. So, now we get to the nitty gritty and one of the final steps of IAP implementation in
your Fusion App/Game.

Ok, so let's jump back to Google Play and setup the items that will be available for 
purchase in your game.

Once you have clicked Add new product, you then click Add Managed Product, give it a 
unique name such as testiap_sword1 then click Submit. You will then be presented with 
a screen to give more information about that item such as title, description and price. 
Once you've set all that up, click Activate!



You can repeat the above step for the other items listed here in this guide in the design 
section above (ie: Fart Powder / Rotten Eggs / Crossbow). ALWAYS make a note of the 
UNIQUE ID you give to your IAP's. You will need this unique ID to connect Fusion to 
Google to tell Google which product to purchase.

Okay, now finally onto Fusion. Jump back to Fusion and your app/game and let's 
implement some startup events. First we'll need to check that Billing is Available. I 
prefer to do this at the Start of the Frame as it enables me to query the inventory and 
get it all out of the way as soon as possible. You can however, implement this anywhere. 
Anyhow, onto that later on. Let's start of with one simple event:

Is Billing Available?
+ Only One Action when Event Loops

You will need to ensure you also attach “Only one action when event loops”, because if 
Billing is Available this action will loop constantly (not necessary and will hog 
performance).

So, we've told our App to QUERY Google's Servers, in other words, LOOK at our account 
and check that those In-App Items are indeed available for our users to buy. Now we 
need to detect that the query has happened:

This is an immediate condition which means the very split second the inventory is ready 
to be read by our app, it will trigger. So what we do now is, set a fastloop to run when 
this is triggered. Wondering how many times to run the fastloop? See Next...



You will need to run the fastloop the same amount of times there is objects available. 
This is so we can loop through all the objects in sequence. So, for example, if there is 5 
in-app items available, we need to loop 5 times. Rather than inputting a static number, 
we'll retrieve this quantity information via the inventory we just queried.

Click, Retrieve Data from an Object. Then right-click on the In-App object and select 
Inventory QTY. This is the quantity of inventory available (it was queried above). We will
call this fastloop “query_invent”.

You should end up with something similar to this in the expression editor:
InventoryQty( "In-App Android" )

Now, this fastloop will run over the inventory. On each fastloop, you could add a line to 
a list object (in your frame) so you can visually see on the first test, that it is indeed 
returning the correct items back. So let's do that. Insert a list object into your frame and
let's do:



So, we have started a fastloop upon Inventory Ready. We use “Inventory Ready” as a 
trigger condition to tell our app that our inventory (on Google's Servers) is now 
accessible and is ready to be looped. So we call a fastloop which does this:

OnLoop: Add a new line to list box: “product_id$” and the value is the 'actual' 
product id according to the loop.

Once the fastloop has finished looping through our available inventory on Google's 
Servers, the list should now be populated with the SKU's (Unique ID's) we gave our in-app
items earlier on.

Now is the time to do a test on your Android device(s). Attach it to your computer via 
USB and hit Build & Run. Some people prefer to build the APK and transfer it manually 
via DropBox, FTP or file transfer. Either will work. Once you run your application on your
device, the list box should populate itself with lines of product names available in your 
Google Play In-App List. If this works, then everything is fine so far. If not, then you may 
need to read over the steps above again (Also ensure you have an active internet 
connection available on the device).

Once you have completed this step and it's working, let's move onto purchasing and 
consuming these in-app items.

Let's do a new condition, asin the user has clicked on Sword1, so let's purchase it. First 
we need to create a condition where the user clicks on Sword1:

We'll setup a new condition, “User Clicks within a Zone” and set the zone up over Sword 
x1. Click OK.



Now, we need to tell the IAP object to purchase Sword 1, which should have an SKU 
(unique id) of testiap_sword1, so let's do that:

Right-Click under the IAP object and select Purchase Operation > Purchase a SKU. In the 
dialog it will prompt you for the SKU of the in-app item to purchase, in this instance it is
sword x 1 (SKU: testiap_sword1) so go ahead and input that:

It will then ask you to provide an identifier, this should be a numerical value. So for this 
guide we will use 1 for the sword, rotten eggs should be 2 etc.



Now that we've done that we need to check that the purchase went through OK, so let's 
setup a new condition:

When you select this it will ask you for an identifier, we used 1 for the sword, so put 1 
and Click Ok. It should now look like this:

Once the purchase is OK, we need to Query the inventory again, you should always query
the inventory after every purchase and everytime the user consumes an item. This just 
keeps your application in-sync with what the user CAN purchase, what the user has 
ALREADY purchased and what the user has in his purchase inventory.

Note: You essentially have two inventories-in-one. The first inventory is what is 
available to purchase (ie: in-app items) the second is the users inventory (what the 
user has already purchased). Think of the second one like a backpack containing 
items the user has already purchased.

Now, we don't need to do anything with QUERY INVENTORY action as we already took 
care of that above with the fastloop. However, you might want to check what the user 
has purchased, if this is the case, then add a second list object to the frame and jump 
back to the second condition we did:

“On Query Inventory Ready”:

We need to start a second fastloop after our first fastloop. Let's call it 
'query_user_invent'. The amount of times to loop should be:



So, it will loop given the amount of quantity in the Purchased inventory. Then:

OnLoop (“query_user_invent”): Add Line to list object 2:

Choose Product ID. When it asks for a value, type in LoopIndex(“query_user_invent”) so 
it should now look like this in the expression editor:
PProductId$( "In-App Android", LoopIndex("query_user_invent"))

This will now populate the second list object you put in the frame with all the items the 
user has purchased.

So, now you should have two lists, one for the inventory with available in-app items to 
buy and a second list for the inventory of what has been purchased by the user. Now, you
can choose when to consume the item, let's say for example the user selects SWORD 
from their backpack in the game, they have now USED the item in the game and it's 
available for them to purchase again if they want so let's consume an item.

So, let's pretend the user clicks on the sword icon in-game. You want them to USE the 
sword item they purchased, so setup an event where they click this icon and on the 
action, right-click on the IAP object and select Purchase Operation > Consume a SKU.



You will want to CONSUME the Sword1, so let's put in it's SKU (unique ID):

With identifier (1 – from earlier):

Click OK.

Now, we obviously need to check with Google that this consumption went through OK 
and Google's Servers have updated that this item has now been consumed so let's do:

What you do after the item is consumed is entirely up to you, it will disappear out of the
list of what the user has purchased. So in this instance, you would equip the player with 



the sword he purchased. Because it has now been consumed, it means it will now 
become available for the user to purchase again in the future.

You can test at any time again on your Android device. Don't forget when you consume or
purchase an SKU (in-app product) you must always trigger the action “Query Inventory” 
so it keeps the lists up to date with Google's Servers.

Any test purchases made whilst in test mode will not deduct payment. Please refer to 
Clickteam's Official Help-File and Example MFA's that came with the Android Exporter.

That's it! The same principal above applies for both Managed and Non-Managed Products.
Managed means Google will keep track of all the orders and inventory, non-managed 
means once the purchase has been made, Google no longer tracks the item so you must 
do this yourself by saving the data locally (ie: if user buys sword1 when it's an 
unmanaged IAP, if they exit the game and re-enter there won't be sword1 in stock with 
Google. You would have to save this information to an INI or an array so the user has the 
sword when he closes and re-enters the game).

FAQ
Frequently Asked Questions

Is it better to use Managed or Un-Managed products?
It is entirely your call. Managed means Google will store every last detail about the 
order, the product and quantities of products. Un-Managed means the user can still 
purchase but all logging stops after the purchase. You must track purchases yourself in 
the app.

Developer Payload? What is it?
The developer payload is a kind of security string sent to Google's Server (by you) that 
will be random and unique for that and every purchase in your game. I didn't include it 
in the above guide because I wanted people to figure out how to implement IAPs without
the added jargon of a Payload. However, in a nutshell, you will need to include a 
payload somewhere, so at the Start of the Frame you could generate a series of random 
numbers. Just do: Start of Frame: Set Developer Payload.

What is random though when two could potentially collide?
This is true. I have worked with a lot of security techniques over the years and even 
though things are random, you could still get the same output twice which could confuse
things. I have figured a way around this. Each Android Device has a UNIQUE DEVICE ID. 
You can retrieve this from the Android Object. So I set my developer payloads to 
UniqueDeviceID+(10+Random(383748))+TimeDate$ Randoms. I will cover this in another 
guide or video on Udemy.



End Note

Thanks for downloading this PDF. I hope it was of use to you. There are only a few other 
conditions, actions and events related to the IAP object. It comes with it's own help file.
You can check this out but they're pretty self-explanatory such as “On Purchase Failed” 
which obviously means the purchase failed. If this condition crops up then you could set 
a string to retrieve the last error message from the IAP object etc.

I will be providing more information via my Udemy course which you can find here:
https://www.udemy.com/creating-games-in-multimedia-fusion-2-beginner-course/

You can find a wealth of information over at the Clickteam Community Forums too.

I hope this Guide was useful and I hope you managed to follow it successfully. Good luck 
in creating your games for Android and making money from In-App Purchasing.

https://www.udemy.com/creating-games-in-multimedia-fusion-2-beginner-course/

